Highly loaded and thermally stable Cu-containing mesoporous silica-active catalyst for the NO + CO reaction.
نویسندگان
چکیده
We report the synthesis of a highly loaded and thermally stable Cu-containing mesoporous silica, which was developed by making use of poly(acrylic acid) (Pac) assembled with surfactant (C(16)TAB), as template. On this backbone, TEOS and Cu(II) hydrolysis takes place leading to the development of the final mesostructure. Poly(acrylic acid) is used not only as a micelle structural component but also as a complexation agent for Cu(II) species resulting in high metal loading and increased thermal stability of the mesoporous network. The original uncalcined material possesses hexagonal ordering, while upon calcination it is transformed into a wormlike mesoporous network with metal loading >14 wt % Cu. An evaluation of its performance as heterogeneous catalyst in NO reduction by CO shows catalytic activity comparable with that of noble metal catalysts. Complete NO conversion, with >90% selectivity to N(2), was achieved between 190 and 200 degrees C. The material retained its structure and catalytic activity after 24-h testing at the maximum catalytic conversion of NO and CO.
منابع مشابه
N,N-Dimethylbiguanide immobilized on mesoporous and magnetically separable silica: Highly selective and feasible organocatalyst for synthesis of β-nitroalcohols
An organosuperbase (N,N-dimethylbiguanide) immobilized on mesoporous and magnetically separable silica supports, was found for the first time, to act as a highly-stable, scalable and efficient heterogeneous catalyst for the Henry reaction under mild and neutral condition. Several factors such as catalyst amount, solvent and reaction time concerning the reactivity were also discussed. The proced...
متن کاملN,N-Dimethylbiguanide immobilized on mesoporous and magnetically separable silica: Highly selective and feasible organocatalyst for synthesis of β-nitroalcohols
An organosuperbase (N,N-dimethylbiguanide) immobilized on mesoporous and magnetically separable silica supports, was found for the first time, to act as a highly-stable, scalable and efficient heterogeneous catalyst for the Henry reaction under mild and neutral condition. Several factors such as catalyst amount, solvent and reaction time concerning the reactivity were also discussed. The proced...
متن کاملA study on the catalytic activity of a new acidic ordered mesoporous silica (SBA-15)
SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as a catalyst. This mesoporous silica due to silanol groups is easily functionalized by various organic materials. A new acidic ordered functionalized mesoporous silica (SBA-15-Aminopropyl-Benzyl-SO3H) has been introduced as an efficient catalyst for ...
متن کاملA study on the catalytic activity of a new acidic ordered mesoporous silica (SBA-15)
SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as a catalyst. This mesoporous silica due to silanol groups is easily functionalized by various organic materials. A new acidic ordered functionalized mesoporous silica (SBA-15-Aminopropyl-Benzyl-SO3H) has been introduced as an efficient catalyst for ...
متن کاملPseudomorphic Reaction: A New Approach to Produce Bulk Mesoporous Silica as Catalyst Support in Methane Reforming
Pseudomorphism is known as a suitable technique for producing mesoscale pore in silica powders keeping their original morphologies. Herein, silica discs with several millimeter dimensions have been prepared using the same method. This method has been utilized through application of pseudomorphism reaction of preshaped bodies by immersion in a solution containing surfactant and swelling re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 25 شماره
صفحات -
تاریخ انتشار 2005